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therefore valid for all alkali cyanides with quasi rock 
salt structure. 

(iv) The differences between cyanides and chlorides 
observed here again confirm the suggestion, derived 
from an earlier investigation on alums (Haussilhl & 
Preu, 1978), that the replacement of  highly symmetrical 
ions like chlorine anions by asymmetric ions causes 
systematic changes in TOEC in the sense that the ratios 
C111/C123 and C111/Cll 2 are strongly reduced by lowering 
c ~  and increasing c~ 2 and c~23. This indicates that the 
'transverse' interactions, which are connected with the 
value of Poisson's ratio, are strengthened. 

A quantitative interpretation of the nonlinear elastic 
behaviour of the alkali cyanides of rock salt type is 
expected to be obtained from a further development of 
the dynamical  models in which the coupling of 
rotational movements of the cyanide ibns with transla- 
tional modes of the lattice is introduced (Bill, Jex & 
Milliner, 1976; Michel & Naudts, 1977; Mokross & 
Pirc, 1978; Rehwald, Sandercock & Rossinelli, 1977). 
Our results with respect to the fluid-like behaviour 
might support efforts to establish a simple model for the 
l ibrational-transverse interactions in fluids. 
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Abstract 

Lindemann's rule was applied to Zn and Cd single crystals 
and found to be valid for these solids, x z being in the range 
0.2 to 0.25. 

Introduction 

As pointed out by Ziman (1965), the basic assumption of 
Lindemann's rule of melting is that melting occurs if the ratio 
of the amplitude of atomic vibration to the radius of the 
space occupied by the atom in the solid reaches a certain 
value. This fraction seems to be a constant for all monatomic 
solids. 

The mean-square displacement in a particular direction of 
the atoms in solids is given by (James, 1948, p. 220) 

- ink02 ~o + --4- (1) 

where h = h/2~r, h = Planck's constant, k = Boltzmann's 
constant, O is the Debye temperature, m the absolute mass of 
the atom, T the absolute temperature and the function 
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is tabulated by James (1948, p. 219). In Fig. 1 this function 
is plotted against O/T.  For high temperatures, O / T  is small 
and the term in parentheses is almost 1. 

Thus, at the melting temperature T M 

3h TM i vz 
f% = \ m k O  z ] 

(2) 

If r is the radius of the space occupied by the atom, the ratio 
x is given by 

tiM ( 3hETM ] m 

X : r =  \ m k O 2  r 21 
(3) 
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Fig. 1. Plots of (a) + vs O/T  and (b) u 2 vs O. 

We should compare this ratio x with the 'Lindemann's 
melting formula' given by Ziman (1965) 

(9h2Tu) 1'2 
Xz = \ m k  02 r 2 = x/3.  x. (4) 

Ziman states that x z seems to be in the range 0.2 to 0.25 in 
most solids. 

It is therefore of interest to examine whether x z for Zn and 
Cd is also about 0.2 and to estimate the ratio ftM/r. Yamata 
& Doyama (1972), for instance, applied Lindemann's 
melting formula (4) to the f.c.c, alloys Cu-Zn, Cu-AI, Ag-  
Mg, Ag-Zn and Ag-Cd and found a value for Xz of about 
0.2 by using for r the radius of the Wigner-Seitz cell at room 
temperature. In this paper the radius of the space occupied 
by each atom is calculated by the relation 

4 nr 3 VEc . . . .  r = 0.4693 t,,2 ,. ~z/3 (5) \ , . ~  t ,  . L .  ta ~ , 
3 N 

where V~c = (x/3/2) a,~.2 %, is the volume of the elementary 
hexagonal cell and N (= 2 for Zn and Cd) is the number of 
atoms per unit cell; at, " and %, are the lattice parameters near 
the melting point. Although the difference in the results of x 
and Xz using the room-temperature or melting-point lattice 
parameters is small, in this paper the lattice parameters near 
the melting temperature were calculated and used in (5). 

Other approaches to Lindemann's law are given, for 
example, by Shapiro (1970), Singh & Sharma (1968) and 
Martin & O'Connor (1977). 

Results and discussion 

Using the values in Table 1 and interpolating the function 

with the help of Fig. l(a), the relation (1) is plotted for Zn and 
Cd with T = 293 K in Fig. 1 (b). 

Values for O~ and O~, estimated in Fig. 1 (b), together with 
an average value Oav determined by 

O~v- 3 + 
(6) 

are collated in Table 2. x and Xz in Table 2 were calculated 
using r defined by (5) and Oar defined by (6). The result for 

2 in the a a n d  Table 1. The lattice parame te r s  a a n d  e at r o o m  temperature,  the mean-square  v ibrat ional  ampl i tudes  u 2 a n d  u C 
c direct ions o f  the lattice [values f o r  Zn by R o s s m a n i t h  ( 1 9 7 7 ) , f o r  Cd by R o s s m a n i t h  (1978)1, the l inear expans ion  coeffi- 
cients fla, tic ( Hellwege,  1967, p. 136), the mel t ing poin ts  t M ( L a x ,  1967), the lattice parame te r s  near the mel t ing point  I calcu- 
lated with at. . = a l l  + fla(tM -- 20)] and  c m = c[ l + fl~(t M -- 20)1/, and  the absolute  a tomic  mass  {calculated by m = relative 

mass  × 1.6604 × 10 -24 [values f o r  relative mass  by L a x  (1967)]} 

a (A) c (A) --u2 --2uc f la(xl06/oc) flc(x 106/°C) tM (°C) at~ t (A) ca, (]k) m (x 1024) (g) 

Zn 2.6659 (1) 4.9403 (2) 0.0099 (2) 0.0261 (2) 14 55 419-5 2.681 5.048 108-54 
Cd 2.977(1) 5.612 (2) 0.0146(3) 0.0385 (3) 17 49 321 2.992 5-695 186.63 
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x z agrees with the statement by Ziman, x z being in the range 
0.2 to 0.25. 

It seems tha__t melting begins in both solids if the amplitude 
of vibration (u2) v2 reaches a value of about 12% of the radius 
of the space occupied by the atom. 

The melting parameters considered here have been 
averaged over all directions of motion, and the observed 

. _ _  

2 and 2 merits further study. anisotropy between u c u a 

Table 2. X-ray Debye temperatures 0 a and 0 c [estimated in 
Fig. l(b)], and Oar [calculated with formula (6)], values for r 

[defined in (5)], and for x and x z [defined in (3) and (4)] 

O a (K) Oc (K) Oar (K) r (A) x x z 

Zn 257 158-3 206.7 1.554 0.12 0-21 
Cd 161 99.0 129.4 1.740 0.12 0.21 
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Abstract 

The fundamental basis for alternative expressions for the 
phase probability distributions related to anomalous- 
scattering measurements is examined. Exact, general ex- 
pressions are derived and these are then simplified for the 
special situations that normally apply in practice. 

North (1965) and Matthews (1966) have described methods 
for incorporating the phase information from anomalous- 
scattering measurements into the isomorphous-replacement 
method in a way that properly takes into account the higher 
accuracy that is intrinsic to measurements of anomalous 
differences relative to those of isomorphous differences. 
These methods have proven to be very effective in protein 
crystallography. However, uncertainty has persisted as to the 
correct form for the error function to be used in phase 
probability distributions. Although North and Matthews 
formulate the problem somewhat differently, after using 
similar approximations in their derivations they seemingly 
arrive at the same result. Yet, varying interpretations have 
been put forward regarding valid forms for use in practice. 

The purpose of this note is to clarify the basic origin of the 
alternative error expressions and to derive the appropriate 
expressions without approximation. Expressions that can be 
cast in the simplified representation of Hendrickson & 
Lattman (1970) are then seen to be based on an alternative 
error model rather than on questionable approximations. 

Moreover, the exact expressions given here may-be  
required in neutron, diffraction where anomalous-scattering 
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effects can be quite large. Expressions appropriate to phase 
information from anomalous scattering without isomorphous 
replacement are also given. 

An isomorphous-replacement experiment that includes 
anomalous-scattering measurements presents, for each 
reflection hkl, three observations: the structure amplitude Fp 
from the native or 'parent' crystal structure and the structure 
amplitudes F+, and F~-H at hkl and its Friedel mate hkl 

_ o  

~ J F p  

Fig. 1. Vector diagram showing relationships among the structure 
factors from an isomorphous-replacement experiment that 
include anomalous-scattering measurements. The vectors 
denoted F~ff and_Sh* are complex conjugates of structure factors 
for reflection hkl and all other vectors are structure factors for 
reflection hkl. 
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